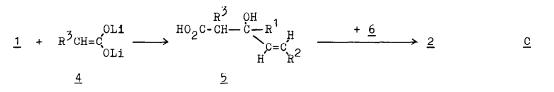

The Decarboxylative Dehydration of 4.5-Unsaturated 3-Hydroxycarboxylic Acids with Dimethylformamide Dimethylacetal - an Efficient Synthesis of Sensitive 1.3-Dienes.

Johann Mulzer*, Uwe Kühl, Gisela Brüntrup

Institut für Organische Chemie der Universität, Karlstrasse 23, D 8000 München 2, West Germany


(Received in UK 26 May 1978; accepted for publication 12 June 1978)

The olefination of $\boldsymbol{\alpha},\boldsymbol{\beta}$ -unsaturated ketones (1) is an important method for the preparation of 1.3-dienes¹. Generally this reaction is performed in two ways, <u>A</u> and <u>B</u>, which are both deficient in certain respects. The WITTIG-condensation A, for instance, has to cope with the low reactivity of 1 towards phosphoranes and thus requires conditions too rigorous for the synthesis of sensitive dienes. So all efforts to prepare 1.3-diphenyl-1.3-butadiene (2a) from benzalacetophenone and methylene triphenylphosphorane resulted only in the formation of the 2a-dimers.² Similarly, reaction <u>B</u> implies prolonged heating of the carbinol intermediate $\underline{3}$ with dehydrating agents like KHSO,, POCl_z etc. which have an isomerizing, dimerizing or polymerizing effect on many dienes³. An additional drawback of <u>B</u> lies in the ambiguous regiochemistry of the dehydration step $(3 \rightarrow 2)$, if R¹ has at least one hydrogen α to the carbinol carbon.

We wish to report a new method (C) for a regiospecific olefination of 1 under very mild conditions, which allow even the synthesis of the unstable 1.3-diaryl-1.3-butadienes $2a-2c^4$. In a previous communication⁵ we have shown that a variety of 4.5-unsaturated 3-hydroxycarboxylic acids 5 can easily be obtained from the addition of dilithium carboxylates (4) to 1. The decarboxylative dehydration⁶ of 5 with dimethylformamide dimethylacetal (6) (CHCl_x, 22⁰, 1hr, workup by TLC (silicagel, ligroin-ether 4:1) or by distil lation at 0.001 torr) furnishes 2 in good yields (Table 1). 2953

The <u>trans</u>-styryl-unit of <u>1</u> is not affected by the reaction and reappears in <u>2</u> unchanged. The new dienes in Table 1 have been characterized by IR, ¹H-NMR and combustion analysis and, in the case of <u>2a,2b</u> and <u>2c</u>, also by the formation of the dimers (<u>2a</u>-dimer: mp.135-137⁰³, <u>2b</u>-dimer: mp.141-142⁰, <u>2c</u>dimer: oil). From <u>2a</u> the TCNE-(mp. 142-143⁰), maleic anhydride⁷-(mp.152-154⁰) and the 4-phenyl-1.2.4-triazoline-3.5-dione- (mp.167-168⁰) adducts have been prepared.

Diene	R ¹	R ²	R ⁵	bp / 0.001 torr	% yield
<u>2a</u>	°6 ^H 5	^с 6 ^н 5	Н	-	65 ^a
<u>2b</u>	"	2-thienyl	н	-	86 ^a
<u>2c</u>	19	2-furyl	н	-	62 ^a
<u>2d</u>	CH.	с _б н ₅	н	70-80 ⁰	70
<u>2e</u>	с ₂ н ₅	"	н	75-850	80
<u>2f</u>	сн(сн ₃)2	11	Н	80-90 ⁰	75
<u>2</u> g	с(сн3)3	"	н	90-100 ⁰	77
<u>2h</u>	Н	"	н	35 - 45 ⁰	70
2a 2b 2c 2d 2e 2f 2g 2h 2h 21 2j	Н	"	CH 3	70 - 80 ⁰	75 ^b
<u>2j</u>	^с 6 ^н 5	11	CH ₃	100 - 110 ⁰	77 ^{a,b}

Table 1. Dienes 2 prepared according to equation C.

<u>a.</u> In these cases <u>C</u> was run with mixtures of <u>5</u> and the corresponding 1.4adduct⁵ from <u>4</u> and <u>1</u>. <u>6</u> converts the 1.4-adduct into the methyl ester which can be easily separated from <u>2</u> by TLC. The yields of <u>2a,b,c</u> and <u>j</u> refer to the amount of <u>5</u> initially present in the mixture. <u>b.</u> Mixture of <u>cis-trans</u>-isomers.

References and Notes.

1. H.v.Brachel,U.Bahr in Houben-Weyl,Methoden der Organischen Chemie,Bd.V/ 1c, Georg-Thieme-Verlag, Stuttgart,1970. <u>2</u>. J.P.Freeman,J.Org.Chem.<u>31</u>,538 (1966). <u>3</u>. W.Herz,E.Lewis,ibid.<u>23</u>,1646(1958);T.L.Jacob,M.H.Goodrow,ibid.<u>23</u>, 1653(1958);C.S.Marvel,R.G.Woolford,ibid.<u>23</u>,1658(1958). <u>4</u>. <u>2a,b,c</u> dimerize at 25[°] with a halflife time of about 1.5 hrs. The preparation of <u>2a</u> via MEERWEIN arylation has been reported by A.V.Dombrowsky,Dokl.Akad.Nauk SSSR, <u>111</u>,827(1956),Chem.Abstr,<u>51</u>,9507^f(1957). <u>5</u>. J.Mulzer,G.Hartz,U.Kühl,G. Brüntrup,preceding letter. <u>6</u>. A.Rüttimann,A.Wick,A.Eschenmoser,Helv.Chim. Acta,<u>58</u>,1450(1975). <u>7</u>. A.C.Cope,E.L.Wick,F.S.Fawcett,J.Am.Chem.Soc.<u>76</u>, 6156(1954).